Authors
Hidalgo, A., Tello, L.
Journal Paper
https://doi.org/10.3390/math8091542
Publisher URL
Publication date
September 2020
We consider a coupled model surface-deep ocean effect, where an Energy Balance Model (EBM) is used for modelling the surface temperature and a two-dimensional heat equation represents the evolution of the temperature of the deep ocean. Although the model under study is based on that proposed by Watts & Morantine (1990), here we consider a modified model that incorporates other processes, such as the nonlinear diffusion and the action of coalbedo, depending on the temperature. The stationary states of the model under study, taking the solar constant as the parameter, are numerically attained. The results of the simulation are depicted in a (Q, u) plot where u is the temperature in the surface and Q is the solar constant. The numerical solution is achieved by means of a finite volume scheme with Weighted Essentially Non-Oscillatory (WENO) reconstruction in space and third order Runge-Kutta scheme, which verifies the Total Variation Diminishing (TVD) property, for time integration. The equilibrium states are accomplished by evolving in time the numerical solution until the stationary solutions are reached. The main novel results of this work concern the numerical obtention of the stationary solutions of both the EBM and the coupled model EBM-deep ocean and the agreement of these results with the theoretically obtained in previous works, where an interval of values of the solar constant Q was obtained with the existence of at least three stationary solutions. In this work, we have numerically obtained more than three stationary solutions for such interval of Q.