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Low-Density Parity-Check Codes

David Elkouss, Jesus Martinez-Mateo, and Vicente Martin

Abstract—Puncturing is a well-known coding technique widely
used for constructing rate-compatible codes. In this paper, we
consider the problem of puncturing low-density parity-check
codes and propose a new algorithm for intentional puncturing.
The algorithm is based on the puncturing of untainted symbols,
i.e. nodes with no punctured symbols within their neighboring
set. It is shown that the algorithm proposed here performs better
than previous proposals for a range of coding rates and short
proportions of punctured symbols.

Index Terms—Low-density parity-check codes, intentional
puncturing, short-length codes.

I. INTRODUCTION

OW-DENSITY parity-check (LDPC) codes are consid-

ered fixed-rate channel codes since they incorporate a
fixed amount of redundant information [1]. However, there
exist some well-known techniques for adapting the coding rate
of a linear code, one of them is puncturing. A linear code is
punctured by deleting a set of symbols in a codeword.

When puncturing a code, we must differentiate between
random and intentional puncturing. In the former, punctured
symbols are randomly chosen, whereas in the latter, the code is
analyzed to select the set of symbols to puncture. The asymp-
totic performance of random and intentional punctured LDPC
codes was analyzed in [2], [3], and puncturing thresholds were
also identified in [4]. Some other methods delved into the
code structure to identify good puncturing patterns [5], [6],
or examined its graph construction [7], [8] to facilitate its
puncturing [9]-[12].

The objectives pursued when switching from random punc-
turing can lead to different solutions. In particular, algorithms
that focus in covering a wide range of coding rates do not
offer the best performance for small puncturing proportions
and vice-versa. Several algorithms find puncturing patterns
that allow to cover a wide range of rates [5], [6], [13]-[15].
However, when working with short length codes, but also in
other scenarios, the ensemble of punctured symbols deter-
mines the decoding performance. In this work, we describe an
algorithm that we call untainted. Its main focus is optimizing
the decoding of moderately punctured codes.

The rest of this paper is organized as follows. In Section II,
we introduce the notation, some puncturing properties and
the untainted algorithm. In Section III, we present simulation
results over several channels, and compare them with the
results in previous studies [5], [6]. Conclusions are presented
in Section IV.
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II. UNTAINTED PUNCTURING

A. Notation and Definitions

Error correcting codes can be represented by bipartite
graphs linking symbol nodes with check nodes. Let! A(z)
denote the neighborhood of a node z, that is, the set of nodes
adjacent to z. The degree of a node is defined as the cardinality
of its neighborhood. This concept can be extended to include
all the nodes reachable from z by traversing a maximum of %
edges, we call this set of nodes A'*(z) the neighborhood of
depth k of z.

Let P stand for the set of punctured symbols, v € P belongs
to the set of 1-step extended recoverable symbols (v € R1)
if 3¢ € N (v) such that Vw € N(¢)\{v},w ¢ P. For n > 1
we recursively define the sets of k-step extended recoverable
symbols Ry. We say that a punctured symbol v ¢ Ry U ... U
Ri—1 belongs to the set of k-step extended recoverable (v €
Ry) symbols if 3¢ € N(v) and Fw € N(c)\{v} such that
w € Ri—1 and Yo' € N(c)\{v,w},w' € P = w € R; U
W URE-.

The graph subjacent to A?¥(v), v € Ry, is assumed to be
tree-like. Let u be a node in N2¥(v). We denote by N *(u)
the neighborhood of u of depth ¢ restricted to the descendants
of u in this tree. Note that V| (u) = N, ' (u). We can prune it
by eliminating the connection of any symbol w € R; with a
check ¢ € Ny(w) if max,cp () {m|w' € Ry} >1—1. We
call this graph 7T, the extended recovery tree of v.

We consider in this letter the sum-product decoding algo-
rithm. The algorithm exchanges messages representing prob-
abilities or the log-likelihood ratio (LLR) of probabilities.
The messages are iteratively exchanged from symbol to check
nodes and from check to symbol nodes. If the decoding graph
is tree-like then, for uniform sources and output symmetric
channels, sum-product decoding is equivalent to maximum a
posteriori decoding and the decoder minimizes the decoding
error [16].

Let us analyze the effect of puncturing on the messages
exchanged in the sum-product algorithm. For every v € P
the decoding algorithm has no information on the value that
v takes. In consequence, for binary input channels it can
take both values (one and zero) with probability one half. On
the LLR version of the sum-product algorithm the outgoing
messages from symbol v on iteration one are equal to zero.

A check ¢ € N(v) in the neighborhood of a punctured
symbol v is called a survived check node if Jw € N (c)|w €
Ri—1, and a dead check node otherwise. The message that a
dead check node c sends to v is a zero LLR. A punctured
symbol is recovered when it receives a message from a

I'We follow a notation similar to that in Ha et al. [5]
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survived check node. It follows from the previous definitions
that a symbol in R, is recovered after k decoding iterations.

We define the extended recovery error probability of a
punctured symbol P, (v) as the decoding error probability of
v € Ry, after k iterations on 7,. Assuming that a codeword
is sent through a binary input memoryless output symmetric
channel the probability of error is independent of the codeword
sent [16]. Then P, (v) is the probability that v takes the value
one conditional to sending the all zero codeword.

These concepts, are extended in the sense that they general-
ize the definitions introduced by Ha et al. in [5]. The difference
between both sets of definitions is that every punctured symbol
is connected to only one survived check node in the (non-
extended) recovery tree in [5] and, in consequence, the (non-
extended) recovery error probability is given by the probability
that the message sent by the survived node is wrong.

B. Properties of the extended recovery error probability

Ha considered the exact recovery error probability over the
(non-extended) recovery tree for the binary erasure channel
(BEC), the additive white Gaussian noise (AWGN) channel
and the binary symmetric channel (BSC). This error probabil-
ity is a monotone increasing function on the number of nodes
in the recovery tree. The algorithm in [5] was developed to
exploit this non-intuitive property.

The single survived check node assumption captures the tree
structure when a high proportion of symbols are punctured.
However, for a low proportion of punctured symbols there
can be more than one survived check node. We now show
that having more than one survived check node is a desirable
property. More precisely, adding a survived check node in
an extended recovery tree can not increase P,.(v). We first
prove a stronger claim on the BEC, i.e. adding a survived
check node decreases P.(v). Then, we prove the property for
general symmetric channels. The idea behind the general proof
is that we can reduce the number of survived check nodes by
adding noise to the symbol nodes under a survived check node.
Then, given that the sum-product algorithm on tree like graphs
with uniform priors is equivalent to a maximum a posteriori
estimation, the decoding on the noisier tree can not reduce the
decoding error probability.

Theorem 1: Let I,k € N and 0 < [ < k. Now consider
the subgraph of a check node z of depth 2k — 2] — 1 such
that max,,e () {m|lw € R} = k — 1. Let T,,, Ty, be the
extended recovery trees associated with punctured symbols
v1,V9 € Ry. Let both trees be identical except for some
x € N?Z%(vy) that is linked with z. Then the recovery
error probability of v; and vy sent through a BEC(«), with
0 < a < 1, verify:

Pe(’l)l) > Pe(’l)g). (1)

Proof: The initial erasure probability of a symbol v is:

(0) { 1 if NS P
€, = .
v o otherwise

further, € can be recursively defined for any symbol and check
in the tree from its children erasure probabilities:
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€y = 65,0) H €c 2)
cEN | (v)
ee=1- J[ A-e). 3)
vEN, (c)

Now, taking into account that there are no punctured sym-
bols within the leave nodes by the definition of the extended
recovery tree, it holds that 61(}0) < 1 for the leaf symbols of the
tree spanning from check z. It follows by induction that: 1)
Vo,c € N ;27271 (2) €, e. < 1; which implies that €, < 1,
and 2) if we attach a check node z with €, < 1 to a symbol
x then €,, > €,,. Finally, the recovery error probability of a
symbol node v is P.(v) = €,/2, which completes the proof.

|

Theorem 2: The recovery error probability of v; and vs
over the trees 7,,,7,, defined exactly as in Th. 1 and
sent through any binary input symmetric output memoryless
channel C, verify:

Pe(vl) EPe(v2)~ (4)
Proof: For a precise characterization of P, in the general
setting, we need to track a message density instead of a scalar.
The initial density function of a non-recovered punctured node
takes the form of the Dirac delta function D(y) = d(y), since
a punctured node transmits a zero LLR with probability one.
Let the remaining nodes in 75, , 7,, have initial densities given
by Py(y), the initial LLR density associated with channel C.
Now consider a second scenario for 7,,. We associate every
leaf node in ka_2l_1(z) with samples from D(y), which
is equivalent to puncturing these nodes. If we puncture the
leave nodes, their parent check nodes do not become survived
check nodes and the symbols w € ka_2l_3(z)|w € P are
not recovered. It follows by induction that z remains a dead
check node, i.e. associating the leaves with D(y) is equivalent
to eliminating the edge joining z to x. In consequence, the
density of messages reaching the root node vy in the second
scenario is identical to the density of messages reaching v; in
the first scenario.

The (binary output) degenerate channel D, with initial
density D(y), transforms any input into a one or a zero with
equal probability, i.e. pp(1|z) = pp(0jz) = 0.5. Let Q
represent the concatenated channel of C' with D:

poWlz) = > po|y)pclylz)
yeY
= 05) pelylr) =pp/|r). )
yey

In other words, D can be regarded as the concatenation of
C' with itself, and the samples from D(y) are stochastically
degraded samples of Py(y) [17].

Following the argument in [18, Th. 5], Eq. (§) implies that
P.(v1) > P.(vs2). The assertion follows from the fact that the
estimate of both v and v are maximum likelihood estimates.

|
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C. Untainted Puncturing Algorithm Description

We introduce the concept of untainted, to propose a simple
method that chooses symbols such that all the check nodes of a
selected symbol are survived nodes. This restriction guarantees
that more than one survived check node is associated with
every punctured symbol.

Definition 1: A symbol node v is said to be untainted if
there are no punctured symbols within A2 (v).

Let X, be the set of untainted symbol nodes. Initially, when
there are no punctured symbols, X, consists of every symbol
node.

{Initialize} Xo, = {1,...,n}, p=1.

while X, # 0 do
{Step 1.— Look for candidates}
Make the set of candidates €2, which is a subset of X,
such that u € Q if [N?(u)| < |N?(v)]| for any v € Xu.
{Step 2.— Select for puncturing}
Pick a symbol node v(») from € (pick one randomly if
there exist more that one symbols in £2).
{Step 3.— Update the set of untainted symbols}
Xy = X \N2(v)
p=p+1

end while

The algorithm obtains a set of puncturable symbol nodes
consisting in the symbols selected in the second step. It
concludes when X, = (), i.e. there is no untainted symbols.
The range of values for p, the number of punctured symbols,
can be found empirically by simulations (see Table I).

Note that for codes with an almost regular check node
degree distribution, the searching criterion in Step 1 can be
simplified: instead of looking for a symbol with the smallest
neighboring set of depth 2, the algorithm can look for symbols
with the lowest degree.

III. SIMULATION RESULTS

The untainted algorithm ensures that the extended recovery
tree of a punctured symbol has more than one survived check
node. In this section, we construct codes to show that the
untainted algorithm yields a better performance in terms of
the frame error rate (FER). We have constructed 10% bit-
long irregular LDPC codes of different coding rates for the
BEC, the BSC and the AWGN channels. The polynomials for
the BSC with rates (0.5,0.6,0.7,0.8) have been drawn from
[19]. The remaining generating polynomials, as well as all the
matrices used can be checked in [20].

Figs. 1, 2 and 3 compare the performance of intentional
punctured codes using the untainted algorithm with those
in [5] and in [6] for different proportions of punctured symbols
m. All codes are decoded with 200 iterations using the sum-
product algorithm [16] over the graph of the mother (non-
punctured) code.

As in Ha er al. [5] we used three random seeds for
the simulations of each intentional puncturing algorithm, the
results in the figures show the intermediate performer.

The untainted punctured LDPC codes outperform the codes
punctured following the algorithms in [5] and in [6] for all the
coding rates, channels and puncturing proportions considered.
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Fig. 1. FER over the AWGN as a function of the signal-to-noise ratio

(SNR). Two LDPC codes with coding rates Rp = 0.5 and Ry = 0.6, and
two different proportions of punctured symbols, 7 = 5% and 7 = 10% were
used.

Fig. 2. FER over the BEC with crossover probability ¢ for different inten-
tional puncturing strategies. Two LDPC codes with coding rates Rg = 0.5
and Rp = 0.6, and two different proportions of punctured symbols, 7 = 5%
and ™ = 10% were used. See inset in Fig. 1 for symbols and line-styles.

For a FER of 1073 the strongest improvements appear in the
BSC for a mother code of rate Ry = 0.3 punctured a 10%,
in the BEC for a mother code of rate Ry = 0.6 punctured a
5% and in the AWGN for a mother code of rate Ry = 0.6
punctured a 10% respectively.

Table I shows ppin and ppax, the minimum and maximum
values of p, respectively, after 5-10% algorithm runs. Sizes are
computed for both the untainted algorithm and the algorithm
in [5]. The values are computed for the same codes used
in Fig. 3 and two additional codes of rates 0.7 and 0.8.
The table shows that the untainted algorithm can puncture a
smaller number of symbols compared to [5]. This behavior is
consistent with the additional number of survived check nodes
required by the untainted algorithm.

IV. CONCLUSIONS

We proved that having more than one survived check node
in the extended recovery tree is a desirable property. The
untainted algorithm is a method that chooses symbols such
that all the check nodes of a selected symbol are survived
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Fig. 3. FER over the BSC with crossover a probability € for several LDPC codes with coding rates Ro = 0.3, Rp = 0.4, Rop = 0.5 and Ro = 0.6, and

two different proportions of punctured symbols, # = 5% and © = 10%.

TABLE I
NUMBER OF PUNCTURED SYMBOLS

Coding rate (mother code)

0.3 0.4 0.5 0.6 0.7 0.8

Ref. [5] Pmin 4628 4031 3439 2866 2258 1581
Pmax 4753 4139 3552 2983 2353 1657

Untainted  ppin 2603 2286 1909 1587 1212 851
Pmax 2686 2374 1987 1655 1273 901

check nodes. Furthermore, the algorithm can be implemented
with a low computational cost.

Simulation results show that the performance of the un-
tainted algorithm in terms of the FER is better than the
best intentional puncturing algorithms in the literature for a
range of coding rates, channels and puncturing proportions.
The drawback of using this algorithm is a reduction in the
maximum achievable rate since the proportion of puncturable
symbols is limited by the untainted criterion.
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